Evidently AI

5 ساعات منذ
نوع التسعير: مجاني جزئيًا
المنصة: الويب

اكتب مراجعة

يجب عليك أن تسجيل الدخول أو يسجل لنشر مراجعة
أدوات الذكاء الاصطناعي الأخرى
Evidently AI is an open-source powerhouse that slashes ML monitoring time by 10X. In 200 words: it spots data drift, model decay, and LLM issues with one Python line, then auto-generates interactive dashboards you can embed or email. Loved by DeepL, Wise, and Realtor.com, its statistical engine and LLM-as-judge evaluators turn silent failures into instant Slack alerts. Zero infra bloat, forever-free core, and a new cloud tier at $0.05 per 1k predictions make it the fastest, cheapest route to bulletproof ML observability.

Tabular Data Drift & Quality Suite

Evidently started here, and it remains the most battle-tested module. Users can compare training versus production datasets, receive feature-level drift scores, and obtain granular quality indicators such as missing-value spikes, cardinality explosions, or unexpected new categories.

ML Model Performance Monitoring

Regression, classification, and ranking metrics—MAE, RMSE, ROC-AUC, Precision@k—are computed automatically when ground truth becomes available. A concept-drift trigger can page engineers on Slack or Teams the moment degradation crosses a configurable threshold.

LLM Observability Toolkit

The newest addition addresses the unique pain points of prompt-based systems. Built-in evaluators check for prompt injection, jailbreak attempts, off-topic answers, toxicity, and PII leakage. Custom evaluators can be written in fewer than 20 lines of Python, leveraging any model endpoint.
أضف إلى المفضلة
الإبلاغ عن إساءة
جميع الحقوق محفوظة © ٢٠٢٥ CogAINav.com.
arArabic